

Assessment and mitigation of natural hazards induced by heavy rainfall

The experience of the European Union Interreg III-B Project CatchRisk

Dr. Manfred Thüring

Institute of Earth Sciences University of Applied Sciences of Southern Switzerland Lugano, Ticino (Switzerland) www.ist.supsi.ch

Heavy rainfall causes natural hazards

- Climate change
- ☐ Higher Temp. » More energy in the atmosphere » More rainfall
- More focalized, more radical weather phenomena
- □ Drought-flood succession
- Increased damage potential due to more intense use of territory/insured values

↑↑ Rockfall at Gotthard highway (2 lives, modest direct damage). ↑ Central Switzerland, 2005-6 lives, 1.25 billion € damages.

SUPSI

Scuola Universitaria Professionale della Svizzera Italiana

Project CatchRisk

- Hazard and risk assessment:
 Different realities in the Alpine space
- EU initiative Interreg III-B
- Hydrological Catchment
 - Natural hazards Risk
- □ Protection approaches
 - Do emergency planning
 - Protect objects at risk
 - Plan land use

Project CatchRisk

CatchRisk in short

- CatchRisk: Heavy rainfall causes natural hazards in alpine valleys
- Rockfalls, superficial landslides, debris flows, flooding
- Exchange/develop tools for hazard/risk assessment
- □ 2.6 milion €uro, 2002-2005
- 11 European regions from Germany, Austria, Switzerland, Italy
- □ Different workpackages
 - WP1: Data organisation
 - WP2: Processes within catchment
 - WP3: Debris flows on the alluvial fan
 - WP4: Flooding
 - WP5: Reporting

CatchRisk – WP2: Processes within catchment

▶ 7 partners - 4 nations - 4 topics - 2 languages

CatchRisk - Rockfalls

Get areas prone to rockfall

- □ Empirical analysis: maximum reach of rockfalls
- Database: starting points
- Modelled in GIS (cone)
- Areas prone to rockfall hazard
- Compared to physically based 3D model:

Match in 80 %

Rockfall deposit

Scuola Universitaria Professionale della Svizzera Italiana

CatchRisk – Rainfall induced soil slips

When is the situation getting critical?

Triggering levels (magnitude)

- □ Triggering levels
- □ Rain gauges
 - → Current situation
- Weather forecast
 - → Forecasting tool

Model spans the catchment of Ticino river

SUPSI

Scuola Universitaria Professionale della Svizzera Italiana

Snapshot of model output: forecast and reality

CatchRisk - Debris flows

Reduce debris flow risk

- Hazard and risk assessment at the municipality level
- Which area is at risk at what magnitude?Assessment by modeling
- Debris flow monitoring/alert system installed

Debris flow modeling for hazard zoning

Debris flow monitoring/ alert system

Scuola Universitaria Professionale della Svizzera Italiana

CatchRisk

Outputs

- Experiences, methods exchanged among participants
- Scientific report
- Guidelines for users

Conclusions

- Project needs defined by the basis
- Exchange know-how and experience
- Learn from each other
- Scientists are consultants to decision makers
- Get the right tools and procedures!
- Be prepared the next natural hazard event is around the corner!
- International projects are not occupational therapies for scientists they must deliver usable results!

Two volumes:

and guidelines

